An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies
نویسندگان
چکیده
Posttranscriptional modifications greatly enhance the chemical information of RNA molecules, contributing to explain the diversity of their structures and functions. A significant fraction of RNA experimental structures available to date present modified nucleobases, with half of them being involved in H-bonding interactions with other bases, i.e. 'modified base pairs'. Herein we present a systematic investigation of modified base pairs, in the context of experimental RNA structures. To this end, we first compiled an atlas of experimentally observed modified base pairs, for which we recorded occurrences and structural context. Then, for each base pair, we selected a representative for subsequent quantum mechanics calculations, to find out its optimal geometry and interaction energy. Our structural analyses show that most of the modified base pairs are non Watson-Crick like and are involved in RNA tertiary structure motifs. In addition, quantum mechanics calculations quantify and provide a rationale for the impact of the different modifications on the geometry and stability of the base pairs they participate in.
منابع مشابه
Structural landscape of base pairs containing post-transcriptional modifications in RNA.
Base pairs involving post-transcriptionally modified nucleobases are believed to play important roles in a wide variety of functional RNAs. Here we present our attempts toward understanding the structural and functional role of naturally occurring modified base pairs using a combination of X-ray crystal structure database analysis, sequence analysis, and advanced quantum chemical methods. Our b...
متن کاملProtonation of base pairs in RNA: context analysis and quantum chemical investigations of their geometries and stabilities.
Base pairs involving protonated nucleobases play important roles in mediating global macromolecular conformational changes and in facilitation of catalysis in a variety of functional RNA molecules. Here we present our attempts at understanding the role of such base pairs by detecting possible protonated base pairs in the available RNA crystal structures using BPFind software, in their specific ...
متن کاملThe effect of some mono and bivalent metal cations on the individual hydrogen bond energies in A−T and G−C base pairs
The effect of interactions of various Ia and IIa cations with two positions of the adenine-thymine (A−T) and guanine-cytosine (G−C) base pairs on the geometries and individual hydrogen bond (HB) energies have been investigated by using the atoms in molecules (AIM) method at the B3LYP/6-311++G(d,p) level of theory. The cations that possess higher charge/radius (q/rad) ratio make higher changes o...
متن کاملDesign of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study
The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...
متن کاملFree energy calculation of modified base-pair formation in explicit solvent: A predictive model.
The maturation of RNAs includes site-specific post-transcriptional modifications that contribute significantly to hydrogen bond formation within RNA and between different RNAs, especially in formation of mismatch base pairs. Thus, an understanding of the geometry and strength of the base-pairing of modified ribonucleoside 5'-monophosphates, previously not defined, is applicable to investigation...
متن کامل